Monday , March 31 2025

how to upgrade stacked S5300 switches

When a single switch is upgraded, services are interrupted about 3 minutes. This time increases when a stack is upgraded. Methods of upgrading the system software of S5300 and S6300 are the same. We can focus on Huawei S5300 switch as an example. Let’s assume we have 2 switches in the stack.

<labnario> display stack
Stack topology type: Ring
Stack system MAC: 80fb-06b1-69eb
MAC switch delay time: 10 min
Stack reserved vlanid : 100
Slot#     role        Mac address      Priority   Device type
------    ----        --------------   ------     -------
    0     Master      80fb-06b1-69eb   100        S5352C-EI
    1     Standby     80fb-06ab-f6e3   120        S5352C-EI

At first you have to check a space of flash memory of the switch. If there is no enough space in the flash to fit a new system software, just delete the old (current) system software, for both Master and Member switches:

Read More »

Huawei AR1200 NAT configuration

A short NAT (Network Address Translation) description based on AR1200 documentation:

Huawei AR1200 supports the following NAT features: static NAT, port address translation (PAT), internal server, NAT Application Level Gateway (ALG), NAT filtering, NAT mapping, Easy IP, twice NAT, and NAT multi-instance.

Read More »

local attack defense on Huawei AR routers

Let’s assume that a large number of packets are sent to CPU of a device. What will happen if most of these packets are malicious attack packets? CPU usage will become high, what can bring to services’ deterioration. In extreme cases it can lead the device to reboot. We can minimize an impact of the attack on network services, providing the local attack defense function. When such attack occurs, this function ensures non-stop service transmission.

Attack Defense Policy Supported by AR routers:

CPU attack defense:
  • The device uses blacklists to filters invalid packets sent to the CPU
  • The device limits the rate of packets sent to the CPU based on the protocol type
  • The device schedules packets sent to the CPU based on priorities of protocol packets
  • The device uniformly limits the rate of packets with the same priority sent to the CPU and randomly discards the excess packets to protect the CPU
  • ALP is enabled to protect HTTP, FTP and BGP sessions. Packets matching characteristics of the sessions are sent at a high rate, that’s why session-related services are ensured.

Read More »

equivalent of Cisco Private Vlan —> Huawei MUX Vlan

Do you know the Private VLAN feature from Cisco switches? The same feature exists on Huawei switches and is called the MUX VLAN.

How does this feature work?

MUX VLAN allows isolating Layer2 traffic of different interfaces in the same VLAN, and still allowing access to common resources.

Look at the topology below. Let’s assume that we want to configure our labnariosw switch, so that:

  • hosts in VLAN10 should be able to ping each other and ping server in VLAN30
  • hosts in VLAN20 should be able to ping server in VLAN30 but not each other
  • hosts in VLAN10 should not be able to ping hosts in VLAN20.

Read More »

how to find TC packets source on Huawei switch

Topology Change (TC) packets are sent when MSTP-enabled interface in a network flaps. If a physical interface frequently alternates between Up and Down, the MSTP status of the device in the network becomes unsteady. As a result, a large number of TC messages are generated, ARP entries are frequently deleted and services are interrupted.

How to find the source of TC packets?

Let’s look at the log, generated on one of the switches in a network. Let’s take Huawei S9300 switch as an example:

Dec 19 2012 11:32:56+10:00 S9300 %%01MSTP/6/RECEIVE_MSTITC(l)[40922]:MSTP received BPDU with TC, MSTP process 0 instance 0, port name is GigabitEthernet6/0/0.

What can we find in this log?

The most important for us is the port number on which the switch received TC packet, in this case interface GE6/0/0. To troubleshoot this problem we have to go to the next switch, connected to interface GE6/0/0 and check logs of that switch. If the neighbouring switch receives TC packets as well, we have to do further troubleshooting. If we find in the logs that MSTP-enabled interface is flapping, we can consider that this interface is the source of the TC packet. If this interface is still flapping, just make it down, to avoid unsteady behaviour.

Read More »